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A jet of granular material impinging on an inclined plane produces a diverse range of
flows, from steady hydraulic jumps to periodic avalanches, self-channelised flows and
pile collapse behaviour. We describe the various flow regimes and study in detail a
steady-state flow, in which the jet generates a closed teardrop-shaped hydraulic jump
on the plane, enclosing a region of fast-moving radial flow. On shallower slopes, a
second steady regime exists in which the shock is not teardrop-shaped, but exhibits a
more complex ‘blunted’ shape with a steadily breaking wave. We explain these regimes
by consideration of the supercritical or subcritical nature of the flow surrounding the
shock. A model is developed in which the impact of the jet on the inclined plane is
treated as an inviscid flow, which is then coupled to a depth-integrated model for
the resulting thin granular avalanche on the inclined plane. Numerical simulations
produce a flow regime diagram strikingly similar to that obtained in experiments,
with the model correctly reproducing the regimes and their dependence on the jet
velocity and slope angle. The size and shape of the steady experimental shocks and
the location of sub- and supercritical flow regions are also both accurately predicted.
We find that the physics underlying the rapid flow inside the shock is dominated
by depth-averaged mass and momentum transport, with granular friction, pressure
gradients and three-dimensional aspects of the flow having comparatively little effect.
Further downstream, the flow is governed by a friction–gravity balance, and some flow
features, such as a persistent indentation in the free surface, are not reproduced in
the numerical solutions. On planes inclined at a shallow angle, the effect of stationary
granular material becomes important in the flow evolution, and oscillatory and
more general time-dependent flows are observed. The hysteretic transition between
static and dynamic friction leads to two phenomena observed in the flows: unsteady
avalanching behaviour, and the feedback from static grains on the flowing region,
leading to levéed, self-channelised flows.

Key words: granular media, shallow water flows, shock waves

1. Introduction
It is a familiar observation that a jet of fluid impinging normally on a horizontal

plane generates a thin, circular region of rapid radial flow surrounded by a stationary
hydraulic jump, beyond which lies a thicker, slower moving fluid layer. The first
analysis of this situation, in the case of inviscid fluid, is due to Lord Rayleigh

† Email address for correspondence: cjohnson@maths.manchester.ac.uk
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Figure 1. Diagram of the experimental apparatus. The granular jet impinges on the inclined
plane, spreading into a region of thin, fast flow (A). The granular material then passes through
a jump, becoming thicker and slower (B) and flows down the plane, which is inclined at an
angle ζ to the horizontal.

(1914). The problem has since been extensively studied, and has been generalised to
cover various fluid-dynamical phenomena such as viscosity (Watson 1964), internal
interfaces (Thorpe & Kavcic 2008), non-Newtonian rheology (Zhao & Khayat 2008)
and surface tension (Bush & Aristoff 2003). We examine in this paper the related
situation of a vertical jet of granular material impinging on an inclined plane, shown
schematically in figure 1. There are three key differences from Rayleigh’s analysis:
the flow of grains rather than of fluid, the impingement of the jet at an oblique angle
and the effect of gravity on the flow down the inclined plane.

Several related problems of jet impingement and subsequent flow have previously
been considered. The oblique impact of a fluid jet on a horizontal surface is described
by Kate, Das & Chakraborty (2007), who observe the circular hydraulic jump of
Rayleigh in flows generated by a vertical fluid jet, and an elliptical hydraulic jump for
jets with impingement angles within 65◦ from normal. For angles greater than this,
when the jet impinges near-tangentially, closed hydraulic jumps with sharp corners
are observed. These are attributed to two phenomena: the interaction of the jet with
the hydraulic jump and, by analogy with compression shocks of gas dynamics, the
presence of Mach stems. Edwards et al. (2008) consider theoretically the normal
impingement of a fluid jet on a plane inclined at an angle. In this situation, the
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predicted hydraulic jump is not closed, but instead forms an open curve resembling
a parabola. The flow is similar to the sheet of flow generated by two symmetric
impinging jets (Taylor 1960; Bush & Hasha 2004), in that the more slowly-moving
fluid outside of the shock forms a tube-like structure, which is small in width compared
to the size of the enclosed thin film. This separation of scales is exploited to model the
outer region as a ‘mass tube’, a line initially of unknown position, which carries mass
and momentum fluxes. Coupling this to analytic solutions of a shallow-water model
for the inner fast-moving region allows the location of the shock to be calculated. In
the granular case, the problem of a jet of sand impinging normally on a horizontal
plane is examined experimentally by Boudet et al. (2007). The behaviour found is
similar to that in the fluid case, in that the granular jet transitions to a thin, fast, radial
flow on impact with the plane, which is bounded by an annular jump in the layer
thickness. In contrast to the fluid behaviour, the basal friction between the granular
material and the horizontal plane slows the radial flow, and leads to the material
outside the jump becoming stationary. The jump then propagates inwards, towards
the point of jet impact.

Interest in the granular problem, and in granular flows in general, stems from the
widespread use of granular materials, and the considerable problems encountered
in understanding their behaviour. The flow of granular materials is central to
the modelling of debris-flows (Iverson 1997) and snow avalanches (Cui, Gray &
Jóhannesson 2007; Gruber & Bartelt 2007) in geophysics, to problems of transport,
mixing and crushing of grains and powders in industry and to problems of soil
stability and mechanics (Mitchell & Soga 2005) in civil engineering. Granular materials
exhibit a wide range of behaviour, including solid-like, liquid-like and gas-like states,
depending on factors such as grain density, granular temperature and shear stress
(Liu & Nagel 1998; Rajchenbach 2000).

2. Governing equations of shallow granular flows
Granular flows of small aspect ratio (those in which the flow depth is much less than

its horizontal extent) are common in free-surface flows on an inclined surface, whether
at laboratory or geophysical scales. Such flows have been successfully modelled using
shallow-layer models (Grigoryan, Eglit & Yakimov 1967; Eglit 1983; Savage &
Hutter 1989; Gray, Wieland & Hutter 1999). A major difference between these depth-
averaged models and fluid hydraulic or shallow-water systems is in the form of
friction present at the base of the granular flow, either a Coulomb friction for smooth
slopes (Savage & Hutter 1989) or a more complex friction model (that of Pouliquen &
Forterre 2002, for example) for dry granular flows on rough slopes. Such friction laws,
in contrast to viscous or turbulent friction modelling in shallow fluid layers, have the
ability to hold a pile of material stationary on an inclined surface.

In common with the fluid-dynamical case, the hyperbolic equations of shallow-layer
granular flow predict the formation of shocks, which correspond to granular jumps,
the granular analogue of hydraulic jumps. These have been observed and studied in
dense granular avalanches in chutes (Savage 1979; Brennen, Sieck & Paslaski 1983)
and in flowing surface layers (Gray & Hutter 1997). More recently, two-dimensional
oblique shocks have been observed in granular avalanches (Gray, Tai & Noelle 2003),
which are quantitatively predicted by a similar analysis to that of hydraulic theory
(Rouse 1949; Hákonardóttir & Hogg 2005; Gray & Cui 2007; Vreman et al. 2007).
Density, or compression shocks have also been observed in granular materials, both
in the regime of a granular gas (Rericha et al. 2002), where they are analogous to the
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shocks observed in compressible gas dynamics, and in dense avalanche flows (Eglit,
Kulibaba & Naaim 2007).

In a shallow-avalanche model, the flow is assumed to be incompressible, and is
represented in terms of its depth-averaged velocity u and height h. The governing
equations are those of conservation of mass and momentum. Our coordinate system
is defined such that the x-axis is oriented in the downslope direction, the y-axis in
the cross-slope direction and the z-axis is the upward pointing normal to the plane,
completing a right-handed Cartesian coordinate system (figure 1) with the origin at
the point of jet impingement. The components of the velocity u in the x and y

directions are denoted u and v, respectively.
We present the equations in the non-dimensional form of Savage & Hutter (1989).

Dimensional variables, denoted by a tilde, are related to their non-dimensional
counterparts by the equations

h̃ = Hh, (x̃, ỹ) = L(x, y), (ũ, ṽ) =
√

Lg (u, v), t̃ =
√

L/g t, (2.1)

where H and L are typical length scales of the flow thickness and horizontal extent,
respectively. Defining the small aspect ratio ε = H/L, the non-dimensional equations
for conservation of mass and momentum in the x and y directions are then (Gray
et al. 2003)

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (2.2)

∂

∂t
(hu) +

∂

∂x
(hu2) +

∂

∂y
(huv) +

∂

∂x

(
1

2
εh2 cos ζ

)
= hsx, (2.3)

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2) +

∂

∂y

(
1

2
εh2 cos ζ

)
= hsy. (2.4)

The source terms

sx = −µ
u

|u| cos ζ + sin ζ, (2.5)

sy = −µ
v

|u| cos ζ, (2.6)

encompass both the effects of friction between the material and the inclined plane
(through the basal friction coefficient µ), and the component of gravity in the x-
direction.

Note that if we define ĥ = εh, then (2.2)–(2.6) can be rewritten in terms of the
variables (ĥ, u) in a form that is completely independent of ε. The parameter ε may
therefore be chosen arbitrarily. Here, however we use the scalings (2.1) and retain ε

in the equations to emphasise that the dominant balance in the avalanche equations
is between the acceleration and source terms.

A Froude number

Fr =
|u|√

hε cos ζ
(2.7)

is defined as the ratio of flow speed to the speed of inertia-gravity waves. In steady
flows, the Froude number relates directly to the way information is propagated by
these waves. Information, in the form of small disturbances, is able to propagate in all
directions in subcritical regions, where Fr < 1. In supercritical regions, where Fr > 1,
information is unable to propagate against the direction of the flow (Courant &
Hilbert 1962; Weiyan 1992). In supercritical flows, the hyperbolic structure of the
equations allows for discontinuities in the solution, or shocks, at which the assumption
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of smoothness implicit in the formulation of (2.2)–(2.4) is invalid. A relationship
between the solution values on either side of the shock is instead given by the jump
conditions

�h(u · n − vn)� = 0, (2.8)

�hu(u · n − vn) + 1
2
εh2 cos ζ n� = 0, (2.9)

derived from the mass and momentum conservation equations in integral form. The
jump bracket �·� denotes the change in continuum variables over a shock, n is a unit
vector normal to the shock and vn is the shock speed.

3. Experimental observations
Our experimental setup is shown in figure 1. A funnel with a circular mouth

of diameter D, in the range 8–15 mm, is held at a distance Hf above an inclined
plane. Granular material flowing from the funnel impinges on the inclined plane and
generates a thin free-surface flow, or avalanche, on the plane. The surface of the
plane is made of untreated hardboard, which is rough at scales below approximately
100 µm. The funnel is fed from another hopper with larger flow rate to prevent
variations in the supplied mass flux caused by a varying level of material in the lower
funnel. The variation in mass flux delivered by the funnels, measured across 0.6 s
samples, is less than 1.6 %. We observe no long-term variability in the flow (caused
for example by changing environmental conditions) in this set-up.

The granular material used in the experiments presented in this paper is soft
masonry sand, sieved to a diameter d � 600 µm. The experiments were also performed
with glass ‘deco’ beads of two sizes, 75 � d � 150 µm and 500 � d � 750 µm, and with
nonpareil sugar grains with d ≈ 1000 µm. The flow on the plane is qualitatively
independent of the type of granular material, exhibiting the same regimes of flow
for all the materials tried. The flow in the region where the jet impacts the plane,
however, is sensitive to particle properties. A small proportion of the granular material
falling from the funnel does not transition to flow over the inclined plane at the
point of impingement, but instead bounces off the plane, forming a sparse cloud
of fast-moving grains. This proportion increases with funnel height (a behaviour
attributable to the decreasing density of the jet as it falls) and becomes the dominant
behaviour of the flow for sufficiently large Hf . For glass beads and sugar grains, a
substantial proportion of the jet becomes airborne when Hf � 15 cm (for D = 15 mm),
a sufficiently low height that flows can be observed only in a very restricted parameter
space. The corresponding maximum Hf for sand is much higher, approximately 50
cm. Results are therefore presented only for sand in this paper. The maximum funnel
height is also limited by a clustering instability in falling granular jets, resembling
that of the Rayleigh–Plateau instability for fluids (Royer et al. 2009). The instability
has its onset at a distance greater than 50 cm from the funnel for D � 8 mm, and is
therefore not a significant source of mass flux variation in the current experiment. For
the range of funnel widths used, the requirement that the flow transitions smoothly
to a flow over the inclined plane restricts the maximum Hf to a lower level than that
enforced by the onset of the jet instability.

We consider primarily the flow after its impact with the plane. Depending on
the slope angle, funnel height and funnel width, this flow exhibits a wide range of
behaviours, resulting from the interaction between the momentum imparted to the
flow by the falling granular material, friction between the plane and the granular
material, and gravity.
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3.1. Steady teardrop-shaped granular jumps

In the first flow regime, the falling jet generates a region of thin, fast-moving flow,
which meets slower-moving material surrounding it at a granular jump. Boudet
et al. (2007) demonstrated that on a horizontal plane, material behind this shock
is stationary and the shock propagates inwards towards the point of impingement.
However, for planes inclined at a sufficiently steep angle, the material flows on both
sides of the granular jump, leading to a stationary granular jump surrounded by a
steady flow.

Such a steady-state flow, for ζ = 26.7◦ and Hf = 30 cm, is shown in figure 2. In
the region of fast, thin supercritical flow within the shock, the flow velocity is
predominantly radial, away from the point of impingement. Across the closed granular
jump surrounding this region, the flow height rapidly increases and flow velocity
normal to the shock rapidly decreases. In the region surrounding and downstream of
the shock, grains flow more slowly, and largely in the downslope direction. In the flow
shown in figure 2, the hydraulic jump is teardrop-shaped, with the shock displaying
a single vertex directly downslope of the point of impingement.

The motion blur in still photographs of the experiment taken over a range of shutter
speeds allows an estimation of surface flow velocities to be made, with an accuracy
of about ±10 %. The thin radial flow surrounding the point of impingement has a
speed of approximately 0.99 m s−1. Substantial velocity variations exist in the thicker
flow surrounding the jump, with the fastest velocities of approximately 0.4 m s−1 being
observed close to the jump, where the flow is almost parallel to the line of the shock.
This forms two fast-moving streams of material in the thicker flow, which meet at
the vertex of the teardrop-shaped shock. At this oblique collision of the two streams,
material is forced upwards into a narrow ‘spout’ normal to the inclined plane; this
transfer of momentum to an orthogonal plane resembles that observed in the fluid
chains generated by impinging fluid jets (Bush & Hasha 2004) or to the jets observed
in shallow fluid flows at high Froude number (Edwards et al. 2008). A stream of
fast-moving flow continues downstream of this, along the centreline of the flow. Far
downstream, the centreline flow speed is approximately 0.11 m s−1.

The thickness of the flow is of order 1 mm inside the shock, and 1 cm outside of
it. This leads to Froude numbers of approximately 10 inside the shock, 1.4 in the
fast-moving streams outside the shock, and 0.3 in the surrounding flow; the flow is
therefore supercritical in a region including the shock, and transitions to subcritical
flow downstream.

Figure 3 shows a time sequence of the formation of the teardrop-shaped shock.
The first material to strike the plane spreads into a thin radially-flowing layer
(figure 3a,b). This layer is slowed by friction and, upslope of the point of impingement,
by gravity. The upslope flow becomes stationary approximately 0.25 s after the jet
impact (figure 3c); this forms a shock in flow height that propagates inwards and
wraps around the point of impingement (figure 3d,f ) as the amount of granular
material outside the shock increases. Unlike the case of impingement on a horizontal
plane, material on both sides of the shock is flowing. The inward movement of the
shocks causes them to collide after approximately 1.5 s, forming a closed shock. The
slower material outside the shock forms a down-slope flow (figure 3g), which reaches
a steady state (figure 3h).

In the initial stages of the flow, before the steady state is reached, a thin layer of
stationary grains is deposited on the inclined plane outside the flowing region. These
particles, labelled in figure 2, have no effect on the flowing region: they can be brushed
away without affecting the flow. The interface between flowing and stationary grains
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Stream

Granular jet

Granular jump

Stationary grains

Shock vertex 

Figure 2. A teardrop-shaped shock in sand for ζ = 26.7◦, Hf = 30 cm and D = 15 mm. Grid
squares are at 2 cm intervals, in this and subsequent figures. The shutter speed is 1/80 s.

exhibits small stick-slip fluctuations in all flows. However, in the flows described up
to § 6, these fluctuations have a negligible effect on the steady flow. Observation of
the steady flows for 30 min showed continued small fluctuations, but no long-term
evolution of the flowing region.
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(b)(a) (c) (d )

(e) ( f ) (g) (h)

Figure 3. Time sequence of the formation of a teardrop-shaped shock, for ζ = 26.7◦,
Hf = 30 cm and D =15 mm. Times after jet impact are: (a) 0.02 s, (b) 0.1 s, (c) 0.26 s,
(d ) 0.50 s, (e) 1.0 s, (f ) 1.5 s, (g) 2.0 s and (h) steady-state. A movie showing the time-dependent
evolution of this flow is available at journals.cambridge.org/flm.

3.2. Steady blunted jumps

For shallower slope inclination angles, a second steady-state regime exists that displays
the same radial flow inside a closed granular jump as before, but in which the shock
is blunted, as shown in figure 4. The sharp vertex of the teardrop-shaped shock is
replaced by a normal shock which lies across the slope. When the two streams of flow
in the thicker layer of material adjoining the shock reach this normal shock, they
are in part directed towards each other, following the line of the closed shock, and
in part detach from the shock and decelerate rapidly to form part of the downslope
flow. The speed of flow downstream of the shock is about 0.07 m s−1.

In the centre of the cross-slope jump, a complex three-dimensional interaction
between three flow streams is observed: the material from the inner region, flowing
directly downstream, encounters both a normal shock, and the components of the
two streams that have been diverted towards one another. The flow at the shock
overturns, and resembles a static continuously breaking wave. The overturning of
the flow at the shock has some resemblance to the recirculation observed in two-
dimensional propagating granular bores by Gray et al. (2003). As a result of this
interaction between the streams, the downstream flow is thickest in two broad regions
either side of a thin trench along the axis of symmetry, a configuration which persists
in the flow downstream. For smaller ζ and greater Hf , the region enclosed by the
hydraulic jump becomes wider in the y-direction, and shorter in the x-direction; in
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Stream

Granular jet

Granular jump

Stationary grains

Trench

Figure 4. A blunted shock in sand, ζ = 25.4◦, Hf = 30 cm, D =15 mm.
The shutter speed is 1/80 s.

this case, two parallel trenches can be generated, forming a w -shaped indentation in
the downslope flow. A supplementary movie, available at journals.cambridge.org/flm,
shows the complex flow in this region.

A phase diagram of the flow regimes for D = 50 mm is shown in figure 5. Teardrop-
shaped shocks (denoted by ×) are observed in all flows where Hf > 10 cm and
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Figure 5. Experimental phase diagram, showing the dependence of flow regime on Hf and
ζ , for D = 15 mm. Teardrop-shaped shocks are indicated by crosses (×), blunted shocks by
circles (�) and steady flows with no shock by plus signs (+). Unstable time-dependent flows
are represented by squares (�). All flows for ζ � 23◦ are steady.

ζ > 26.5◦; blunted shocks (denoted by ◦) are observed in a more limited range of
slope angles, 24.5◦ � ζ � 26.5◦ and only for Hf > 9 cm. We attribute the different
behaviour in the two regimes to whether the Froude number is greater or less than
unity in the material immediately downstream of the radial flow region. This was
determined experimentally by introducing a small disturbance onto the flow, for
example with the point of a pin; if the flow is subcritical, the disturbance propagates
in all directions, whereas for supercritical flow, the disturbance is limited to a wedge
downstream of the pin. For teardrop-shaped shocks, the flow on the downstream side
of the shock vertex is supercritical. Here, information can propagate only downstream,
which explains the lack of visible influence of the shock interaction on the upstream
flow, and the consequent sharp vertex. For blunted shocks, the material becomes
subcritical as it passes through the cross-slope section of shock. In this subcritical
flow, the effect of the collision between the shocks can propagate upstream, leading
to the curved shock observed in experiments. The correspondence of Froude number
with the flow regime is consistent with the observation that teardrop shocks occur at
steeper slope inclinations, where the flow on the plane is faster and thinner (and thus
of higher Froude number) than at lower inclinations. The decrease with increasing
Hf of the critical slope inclination angle separating teardrop-shaped from blunted
shocks (figure 5) is also consistent with this hypothesis, since the velocity of the flow
at the inflow increases with Hf .

3.3. Other steady regimes

In addition to the blunted and teardrop-shaped shocks, two further regimes of steady-
state flow exist in which a shock is not present. In the first of these, observed when
Hf � 10 cm, the flow velocity in the region surrounding the impingement point is
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still supercritical, but the shocks become sufficiently diffuse (that is, the variation in
flow occurs over a sufficiently large region) that they are indistinguishable from the
surrounding flow. This is consistent with the observation of Gray & Cui (2007) that
shocks in granular materials become diffuse at low supercritical Froude numbers.
The second regime occurs in the range of inclination angles 23◦ � ζ � 24.5◦, when
the flow is sufficiently deep that it is subcritical everywhere. Since supercritical flow
is required for a hyperbolic shock to exist, this flow also displays no shocks. These
steady flows without shocks are denoted by + signs in figure 5. Unsteady flows,
observed for ζ � 23◦ and denoted by �, exhibit a wide range of complex behaviour
which is discussed in § 6.

In addition to the hardboard surface of the inclined plane, the experiments were
tried with two other surface types: a smooth perspex sheet, and a sheet of hardboard
roughened by gluing a layer of sand to it. The teardrop-shaped shocks, as well as the
steady and unsteady flows without shocks were observed on all surface types. On the
roughened surface, blunted shocks were observed, with the transition between teardrop
and blunted shock regimes occurring at ζ ≈ 35◦ and unsteady flows observed below
approximately 30◦. The increased friction on the roughened slope is responsible for
the increase in slope angle required to balance friction in the steady flow downstream.
On the perspex surface, the transition between teardrop-shaped shocks and unsteady
flows occurs over a narrow range of slope angles close to 22◦, with blunted shocks
occurring only in this small region of parameter space. This transition is consistent
with a constant Coulomb friction coefficient for the flow over a smooth surface.

4. Friction law and impingement condition
4.1. Friction law

We seek to model the experimental flows using the shallow-layer avalanche model
of (2.2)–(2.6). The use of this model is motivated by the shallowness of the flows in
question, in which the aspect ratio of the flow is approximately 1/30. To close the
system of equations, an expression for the basal friction coefficient µ is required. The
basal friction was taken to be a constant by Savage & Hutter (1989) for Coulomb-
frictional flows over smooth surfaces. For such a friction law, steady flows of uniform
thickness are possible only at a single slope angle, when ζ = tan−1 µ. More recently,
Pouliquen (1999b) performed laboratory-scale experiments of flows of glass beads
over a roughened bed, and observed steady uniform flows over a range of slope
angles. They demonstrated a minimum height h̃stop(ζ ) at which a steady flowing layer
can exist on a slope inclined at an angle ζ , and found an empirical dependence of the
ratio of flow height h̃ to h̃stop on the Froude number

Fr =
|u|√

hε cos ζ
= β

h̃

h̃stop(ζ )
, (4.1)

where β = 0.136 is a measured constant for glass beads. In one-dimensional steady
uniform flows, the cross-slope velocity v =0 and the downslope source term sx = 0,
leading to the relation between the friction coefficient and slope angle

µ = tan ζ. (4.2)

Denoting the inverse of h̃stop(ζ ) by ζstop(h̃), the function

µstop(h̃) = tan(ζstop(h̃)), (4.3)



98 C. G. Johnson and J. M. N. T. Gray

leads, through the scaling law (4.1), to an equation for the friction coefficient

µ = tan ζ = µstop(h̃stop(ζ )) = µstop

(
h̃β

Fr

)
. (4.4)

The form of the function µstop is a fit to the experimental measurements of h̃stop(ζ ),
and takes the form of a transition between two friction angles ζ1 and ζ2, either

µstop(h′) = tan ζ1 + (tan ζ2 − tan ζ1)
1

1 + h′/L , (4.5)

as in Pouliquen & Forterre (2002), or in the Pouliquen (1999b) form,

µstop(h′) = tan ζ1 + (tan ζ2 − tan ζ1) exp(−h′/L). (4.6)

The friction angles used here are those measured by Pouliquen & Forterre (2002),
ζ1 = 21◦, ζ2 = 30.7◦, ζ3 = 22.2◦. The parameter L, which has the dimensions of length,
depends on the granular material and surface properties of the plane and characterises
the depth of flow over which a transition between the two friction angles ζ1 and ζ2

occurs. The friction law (4.4) is valid for flows in the steady regime where h̃ > h̃stop ,
that is, for flows in which Fr > β .

For stationary material, the basal friction balances the lithostatic pressure and
gravitational forces exactly, up to a maximum value corresponding to the coefficient
of static friction µ =µstart (h̃). This is calculated, through (4.2), by measuring the
maximum inclination angle at which a uniform layer of stationary material starts to
move, and takes the form

µstart (h
′) = tan ζ3 + (tan ζ2 − tan ζ1)

1

1 + h′/L . (4.7)

For flows of 0 <Fr <β , we follow the method of Pouliquen & Forterre (2002) in
interpolating between the static and steady-flow friction coefficients with a power
function

µ =

(
Fr

β

)γ

(µstop(h̃) − µstart (h̃)) + µstart (h̃), (4.8)

where γ = 10−3. The parameter L provides a convenient length scale with which
to non-dimensionalise the depth of the flow. We take L = 10 mm, and non-
dimensionalise the flow depth by setting H = L in the scalings (2.1). The horizontal
length scale for non-dimensionalisation L is chosen to be 0.5 m (a typical length of
the closed granular jump and associated rapidly-flowing streams), giving ε = 1/50.

The choice of a Pouliquen-type friction law rather than a Coulomb one is motivated
by our observation of both steady uniform flows over a range of slope angles and a
critical flow depth, dependent on slope angle, below which steady flow is not observed.
In our simulations of the experiment, only small differences are found between results
obtained with the friction law for glass beads, defined in (4.6) and (4.8) and a modified
version for sand (Forterre & Pouliquen 2003, (4.17)).

Close-up photographs of the fast radially flowing region inside the shock show
that the flow is only a few grains thick. This is consistent with the observations of
Boudet et al. (2007), for the impingement of a jet onto a horizontal plane, where the
flow is approximately four grain diameters deep. The flow in this region appears less
dense than that in the more slowly flowing regions outside the shock, and than the
material at the point of impingement itself. In the region of thin flow, many particles
are not in contact with any other: the assumption of an incompressible continuum
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(a) (b)

Figure 6. Photographs of the impingement region, viewing across the slope (a) and normal
to it (b). The vertically falling jet of material is converted to a thin, radial flow on impact
with the plane. Above the point of impingement, particles are held almost stationary by the
dynamic pressure of material flowing uphill from the point of impingement.

is therefore invalid, and neither a lithostatic pressure nor a Pouliquen-type friction
law would be expected here. These discrepancies are minimised by the small effect of
internal pressure and basal friction in this region; the transport terms in (2.3)–(2.4)
become large compared to the pressure gradient and frictional source terms. The
exact choice of pressure and frictional models therefore has little effect in this region.
Furthermore, the assumption of incompressibility can be relaxed by considering h

not as the flow height, but as a measure of the amount of mass at a given point, as is
possible when surface-gradient-generated pressures are negligible. While we might not
expect h to accurately represent the flow height in this region of sparse flow (indeed,
a flow height may not even be clearly defined), the mass and momentum fluxes are
predicted correctly. Since these are the quantities which determine the shock relations,
the use of the shallow avalanche model in the fast-moving region is acceptable for
predictions of the shock position.

We model the internal stresses in the granular material as an isotropic lithostatic
pressure, in contrast to the Mohr–Coulomb rheology used by Savage & Hutter
(1989). Simulations of the current problem have been compared, with the earth-
pressure coefficient firstly set to unity (e.g. Gray et al. 2003) in the isotropic case,
and secondly determined by the two-dimensional formulation of Iverson & Denlinger
(2001) in the case of a Mohr–Coulomb rheology. In the current problem, only small
quantitative differences exist between the results of the two models; for simplicity, the
isotropic pressure assumption is made.

4.2. Region of impingement

The region of impingement, in which the flow transitions from a vertical jet to flow
across the inclined plane, is shown in detail in figure 6. The flow here is fully three-
dimensional, and the approximations made in the assumption of shallow-layer flow
are invalid. We seek an alternative model for the flow in this region, and match it to
the shallow-layer model, which is valid elsewhere, by applying appropriate boundary
conditions on an interface separating the two model regions.
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Figure 7. (a) Cross-section of the impingement region in the plane y = 0. The separation
streamline is shown as a dashed line. (b) Section of the jet in the plane S, parallel to the
inclined plane

As in the case of the normal impingement examined by Boudet et al. (2007), a
smooth transition from a falling jet of material to thin radial flow over a plane is
observed, but details of the three-dimensional flow in the region of impingement
are unknown. In the case of normal impingement, the problem resembles the high
aspect-ratio limit of granular column collapse, a problem which has received extensive
study (Lajeunesse, Mangeney-Castelnau & Vilotte 2004; Lube et al. 2004; Doyle et al.
2007). Contact dynamics simulations of this problem for column aspect ratios up to
17 (Staron & Hinch 2005) predict a smooth transition from falling to thin-layer flow.
This is consistent with our experimental observations for a continuous stream. When
a transparent plane is used to view the flow from beneath, a single stagnation point
is observed under the jet, surrounded by a radial flow. For oblique impingements, the
qualitative behaviour of the flow is similar, with a stagnation point observed under
the jet impact region, surrounded by radial flow. The mass flux of the radial flow is
no longer axisymmetric however, and becomes dependent on θ , the angle of a plane
polar coordinate system in the xy-plane centred at the stagnation point.

In the absence of a granular rheology for this flow, we make the assumption
that the flow in the region of impact can be modelled as an inviscid, irrotational
and incompressible fluid. Under this assumption, the flow admits a solution which
describes the transition of a jet of fluid to a radial flow across a plane (figure 7a). Our
choice of this model is motivated by the qualitative similarity between its predictions
and experimental observations. The granular impingement is subject to frictional
energy losses, which are neglected in the ideal fluid model. An estimate of these
losses in the case of normal impingement is given by Boudet et al. (2007), who
found experimentally that the velocities in the radial flow generated by the normal
impingement of a granular jet were 20 %–50 % lower than would be expected if
energy were conserved in the region of impingement. Therefore, while the ideal fluid
model is expected to correctly predict the distribution of granular material onto the
plane, a quantitative link to the velocity of the falling jet is not attempted.

The oblique impingement of a circular jet of inviscid fluid on a plane was first
described by Schach (1934). More recently, the analogous situation of two symmetric
colliding jets has been considered, both experimentally (Taylor 1960) and theoretically
(Hasson & Peck 1964). The flow contains a stagnation point Q on the plane, connected
to the incoming jet by a separation streamline. We consider a section of the jet through
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a plane S, parallel to the xy-plane and far from the impingement region (figure 7b),
where the flow is parallel to the jet axis. The jet velocity through S is denoted ujet .
The jet is cylindrical and of radius R, and thus its intersection with S is an ellipse
of major axis 2R/ sin ζ in the x-direction and minor axis 2R in the y-direction. The
intersection point of the separation streamline with S is denoted by P . Symmetry
about the plane y = 0 implies that P must lie on this plane, at a distance χ from
the centre of the ellipse. The radial distance from the origin on the inclined plane is
denoted r , and the radial velocity ur .

Taylor (1966) showed that a full calculation of the three-dimensional flow in the
region of impingement is required to determine how the outflow mass and momentum
fluxes are distributed in θ . We follow Hasson & Peck (1964) in assuming that flow
which enters the impingement region in the angular segment dθ (figure 7b) remains in
this segment throughout the flow. This approximation is justified by good quantitative
agreement with experimental results (e.g. Kate et al. 2007), and allows a solution for
the outflow to be determined using global balance arguments alone. On this basis,
we equate the mass flux through S in a segment dθ with the mass flux leaving the
impingement region on the inclined plane in the same segment, giving

q dθ
q

2
ujet cos ζ = r dθ hur, (4.9)

where q(θ), defined in figure 7(b), is related to χ by the equation for an ellipse

(q sin θ)2 + (q cos θ − χ)2 cos2 ζ = R2. (4.10)

For radial flow far from the impingement region, the flow velocities in the z-
direction are negligible. Applying Bernoulli’s equation to a surface streamline then
implies that the radial flow velocity ur is equal to the jet velocity ujet for all θ . The
gravitational term in Bernoulli’s equation can be neglected because the height of the
impingement region Hir is much smaller than the funnel height Hf ; the fractional
change in velocity due to gravity within the impingement region, which scales like
Hir/Hf , is therefore small. With velocity in the radial flow equal to ujet , (4.9) simplifies
to

hr =
q2

2
cos ζ. (4.11)

The remaining unknown χ is calculated from the conservation of momentum in the
x-direction. Considering x-momentum fluxes through S and in the radial flow gives

ρπR2u2
jet sin ζ =

∫ 2π

0

hρu2
r cos θ r dθ, (4.12)

which simplifies to

π tan ζ =

∫ π

0

( q

R

)2

cos θ dθ. (4.13)

Using (4.10) to evaluate q in terms of χ , if

χ = R tan ζ, (4.14)

then

q =
R cos ζ

1 − sin ζ cos θ
. (4.15)

It can be shown that this expression for q satisfies (4.13), providing a solution for χ .
Through (4.10) and (4.11), the solutions for u and h at a distance r from the point of
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separation are

u =
(
ujet cos θ, ujet sin θ

)
, (4.16)

h =
R2 cos3 ζ

2r (1 − sin ζ cos θ)2
. (4.17)

This solution reproduces the observed stagnation point and, qualitatively, the
dependence on θ and ζ of the radial mass flux for oblique impingement.

It remains to match the analytical solution found for the impingement region to the
flow elsewhere, modelled by the shallow-layer equations (2.2)–(2.4). The values for u
and h given by (4.16) and (4.17) describe the solution of the inviscid jet impingement
problem when r is sufficiently large that flow velocities in the z-direction are negligible.
In addition, (4.16) and (4.17) are a solution of the shallow-layer model in the limits of
no horizontal pressure gradients and source terms; these two limits are approached
in the fast-moving flow of the impingement region. The boundary between the
analytical solution in the impingement region and the surrounding shallow-water
model is therefore chosen to be sufficiently far from the point of impingement that
flow velocities in the z-direction are small, but sufficiently close to the point of
impingement that frictional and pressure-driven accelerations on the flow within this
region can also be neglected.

This assumes that the flow within the impingement region is not affected by the
flow outside it. This is invalid if the flow is subcritical anywhere on the interface
separating the two modelling regions, since information can then propagate from
the flow outside back into the impingement region. The solution of the inviscid jet
impingement problem (4.16)–(4.17) has Froude number increasing without bound for
increasing radius; the condition of supercritical flow is therefore satisfied at sufficiently
large r .

5. Numerical method and results
The system (2.2)–(2.4) is a set of nonlinear hyperbolic conservation laws that can

be written in vector form as

∂w

∂t
+

∂ f (w)

∂x
+

∂ g(w)

∂y
= s, (5.1)

where w = (h, hu, hv)T is the vector of conserved variables, and s =(0, hsx, hsy)
T. The

flux functions f and g are given by

f =

⎛
⎝ hu

hu2 + εh2/2
huv

⎞
⎠, g =

⎛
⎝ hv

huv

hv2 + εh2/2

⎞
⎠. (5.2)

Several techniques exist for the numerical solution of such systems of conservation
laws (LeVeque 1992). We elect to solve the equations using the finite-volume method
of Jiang & Tadmor (1998), an extension to two-dimensional Cartesian grids of the
non-oscillatory central scheme of Nessyahu & Tadmor (1990). These methods are
of high resolution, in the sense that flux limiters are used to obtain second-order
accuracy away from the shocks, while remaining non-oscillatory in the region of
discontinuities. For the numerical solutions presented here, the extended ‘MinMod’
limiter (Jiang & Tadmor 1998, (3.1)) has been used with parameter θ = 2. The choice
of conserved variables in the vector w, in conjunction with the non-oscillatory scheme,
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ensures that the numerical method is shock-capturing. Such methods are required to
handle correctly the discontinuity in solution at a granular jump (Tai et al. 2001,
2002; Gray et al. 2003).

Downstream flow conditions strongly affect the formation of oblique shocks in
granular flows (Gray & Cui 2007). In this problem, there are both sub- and
supercritical regions present at the downstream boundary of the numerical domain,
requiring either one or zero boundary conditions, respectively (Weiyan 1992, p. 111).
This numerical boundary is treated by constructing a row of ghost cells outside
the domain, with values determined by a linear extrapolation of the two final
rows of interior cells, which is appropriate for both subcritical and supercritical
outflow (LeVeque 2002, p. 131). This boundary is sufficiently far downstream that
the numerical solution is independent of its exact position. The numerical domain
has sufficient extent in the y-direction that all material leaving it does so through the
downstream boundary.

In order to apply the boundary conditions at the matching interface between the
solution for the impingement region given by (4.16) and (4.17) and the shallow-
layer model elsewhere, we enforce (4.16) and (4.17) in any finite volume cells which
lie within a circular region of radius Rimp , centred on the stagnation point Q.
Since the impingement region solution and shallow-layer model solutions coincide
here, the numerical solutions are expected to be insensitive to the point at which
the two solutions are matched, provided that the conditions for the matching are
satisfied. These conditions are that the velocities in the z-direction in the inviscid
fluid model and horizontal pressure gradients and source terms in the shallow-layer
model are negligible, and that the flow is supercritical everywhere on r = Rimp . The
value Rimp ≈ 2R has been chosen, which satisfies these conditions for the simulated
flow parameters. As expected, our numerical results are insensitive to the exact value
of Rimp .

5.1. Teardrop-shaped shock

Figure 8 shows a numerical solution of (2.2)–(2.4) exhibiting a steady teardrop-
shaped shock, comparable to that seen in the experimental flow of figure 2. The slope
inclination angle and funnel diameter are the same as those in the experimental flow,
and the axes of figure 8 cover the same region as that shown in figure 2.

The unknown energy loss in the impingement region means that the funnel heights
Hf in numerical solutions are not directly comparable to those in the experiments.
Instead, the speed of the radial flow inside the shock is compared. Under the ideal
fluid model for the impingement region, (4.16) implies that the speed of flow leaving
the impingement region on the inclined plane is ujet . Experimentally, we estimate this
velocity to be approximately 0.99 m s−1 in figure 2: we therefore use ujet =0.99 m s−1

for the numerical solutions in figures 8–10.
Figure 8(a) shows the location of the shock as a black line, with streamlines of the

flow in grey. The region in which the flow is supercritical is shaded. The numerical
solution reproduces well the region of fast radial flow surrounding the point of
impingement (indicated by radial streamlines), the teardrop-shaped shock and the
shape of the flowing region. The shock length is 0.28 m, close to the experimental
result of 0.27 m.

The shaded region of supercritical flow outside the shock shows that the two
supercritical streams on either side of the teardrop merge at the shock vertex to
form a single stream. This is consistent with the experimentally observed region
of supercritical flow in figure 2, which approximately corresponds to the region of
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Figure 8. Steady-state numerical solution for ζ = 26.7◦, ujet = 0.99 m s−1 and D = 15 mm. The
axes correspond to the same regions shown in figures 2 and 4. In (a), the shading indicates
supercritical flow (Fr > 1). The grey lines are streamlines, and the thick black line indicates
the region of strongly converging flow velocity, an identifying feature of the shock. In (b),
contours are of flow height, at intervals of 1 mm, with dark contours at intervals of 5 mm.
Shading indicates the flowing region of material. Figures (c) and (d ) show cross-sectional plots
of flow variables, for x =0.1 m and x = 0.35 m, respectively. Downslope velocity u is indicated
by a dashed line and flow depth h by a solid line.

motion blur. The streamlines in this region, which follow the line of the shock, further
resemble the experimental flow. The structure of these streams is visible in figure 8(c),
which shows the values of the flow variables u (dashed line) and h (solid line) along a
cross-section at x =0.1 m, through the closed shock. Inside the shock (which occurs at
y = ± 0.04 m), u ≈ 0.99 m s−1 as expected, and h ≈ 1.3mm, close to the experimental
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Figure 9. Time sequence of the numerical solution of figure 8, with ζ =26.7◦, ujet = 0.99 m s−1

and D = 15 mm. Contours and shading have the same meaning as in figure 8(b) The times
after jet impact in each sub-figure are in the same ratio as those in figure 3: (a) 0.02, (b) 0.1,
(c) 0.26, (d ) 0.50, (e) 1.0, (f ) 1.26, (g) 1.76, (h) steady-state. A movie showing the time-dependent
behaviour of this solution is available with the online version of this paper.

estimate of h = 1 mm. Across the shock, while h increases rapidly to about 6.5mm,
u is nearly continuous. (The peak in u at the location of the shock is a numerical
artifact caused by the non-conservative form of u.) The continuity of u is due to
the jump relation (2.9) which implies that velocity tangential to the shock (which is
nearly in the downslope direction at x =0.1 m) is continuous. It is this continuity of
tangential velocity which causes the fast-moving streams of material to exist outside
the shock. A substantial shear exists in the stream, as u decreases by an order of
magnitude to approximately 0.05 m s−1 over 2.5 cm. At the vertex of the shock, the
numerical solution exhibits a pair of shock reflections, leading to a weakening stream
of shock interactions and reflections in the supercritical flow downstream of the
shock vertex. The structures of these shocks resemble those described for supercritical
shallow-water flows by Akers & Bokhove (2008). Experimentally, the flow in the
region below the shock vertex is complicated by the formation of a spout, which is
outside the scope of the thin-layer model (Edwards et al. 2008), but some evidence of
a shock reflection, forming a triangular region downstream of the shock vertex, can
be seen in figure 2. The extended chain of shocks below this is not observed in our
experimental flows.
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Figure 10. Numerical solution for ζ = 24.5◦, ujet = 0.99 m s−1 and D = 15 mm. The flow has
reached the steady state. The meaning of contours and shading for (a) and (b) is as in
figure 8(a) and (b) respectively. A movie showing the evolution to this steady state is available
at journals.cambridge.org/flm.

The flow thickness is shown by the contours in figure 8(b). The rapid increase
in flow height across the teardrop-shaped shock is evident, as is the variation in
thickness downstream of the shock vertex caused by the chain of shock interactions.
The shaded region in figure 8(b) indicates flowing material. Surrounding and upslope
of the flowing region, a region of stationary (unshaded) material is present. This is
consistent with the location of stationary material in experimentally observed flows;
material above the point of impingement is held stationary by the pressure of the
upstream flow (figure 6), while a thin layer of stationary material with h � hstop

surrounds the flowing region further down the plane (figure 2).
Figure 8(d ) shows a cross-section at x =0.35 m, through the flow just downstream

of the shock. For 0.03 < |y| < 0.125 m, u varies between 0.08 and 0.04 m s−1. These
velocities are within 20 % of the velocity of a steady uniform down-slope flow of the
same thickness profile (obtained from h by solving (4.4) for u). Along the centreline
of the flow, at x = 0.35 m, the velocity is significantly larger at 0.7 m s−1, eight times
faster than the steady uniform flow speed. This is part of the supercritical region
downstream of the shock vertex in figure 8(a), and reflects the rapidly moving stream
observed in experiments. Far downstream, the numerical prediction of centreline
velocity is 0.12 m s−1, close to the experimental measurement of 0.11 m s−1.



Granular jets and hydraulic jumps on an inclined plane 107

The time-dependent flow which leads to the steady state shown in figure 8 is
shown in figure 9. The evolution to the steady solution bears a strong resemblance
to the experimentally observed transient flow in figure 3: the material upstream of
the impingement point stagnates and a shock forms, separating the inner fast-moving
region from the slower flow surrounding it. The shock propagates downslope and
wraps around the radial flow region, eventually closing at the downstream vertex.
This propagates back towards the impingement point until the flow reaches a steady
state. As in the experimental observations, a region of stationary particles is formed
outside the flowing region in the numerical solution in the initial stages of the flow
(figure 8a–c).

5.2. Blunted shock

Figure 10 shows a numerical solution at a lower inclination angle of ζ =24.5◦,
resembling the blunted shock regime observed experimentally (figure 4). In order to
produce a comparable blunted shock, the slope angle in figure 10 is 0.9◦ lower than
that in figure 4; we discuss this discrepancy in § 5.3. The shock in figure 10 is not
closed at a sharp vertex, but by a curved shock lying across the slope. A transition
from supercritical to subcritical flow occurs across this cross-slope shock, indicated
by the shading in figure 10(a). For the thin-layer granular avalanche equations
(2.2)–(2.4), Gray & Cui 2007 (p. 121) show that such a transition implies that the
shock is a strong shock. The strong shock meets the pair of shocks surrounding the
point of impingement at shock interaction points. Each of these is the triple point
of a Mach reflection, with the strong cross-slope shock forming the Mach stem.
Two further line discontinuities are generated at each triple point, one a reflected
shock and another a contact discontinuity. These are visible in figure 10(a), the
reflected shock as a thick black line, and the contact discontinuity as the inner
edge of the two streams of supercritical flow which continue downstream of the
strong shock. As in the case of a teardrop shock solution, a chain of weaker shock
reflections exists in these two streams, which are too weak to be indicated as shocks
on figure 10(a), but are clearly visible in the flow height contours of figure 10(b).
The flow downstream of the strong shock was measured to be 0.07 m s−1 in the
experiment of figure 4. The numerical simulation is consistent with this, predicting
u = 0.055 m s−1 on the centreline immediately downstream of the shock at x = 0.11 m,
rising to u = 0.081 m s−1 at x = 0.25 m.

A feature shown clearly in figure 10(a) (and which is present, but less clear, in
figure 8a) is the structure of the two streams surrounding the shock. Within the
region of the stream, the flow is supercritical (shaded in figure 10a) and streamlines
are nearly parallel to the shock. This phenomenon is caused by the effect of the
shock on the flow velocity: the rapid decrease in velocity normal to the shock as the
material goes through the shock, together with the continuity of velocity tangential
to the shock, results in material that has been through the shock travelling nearly
tangential to it. Outside of the supercritical streams, the streamlines diverge sharply
from being parallel to the shock, and assume their form for the flow far downstream.

One difference between the numerical solutions and experimental observations of
figures 4 and 10, respectively is in the presence of a shock interaction point in the
solution of the model equations, where instead a strongly curved shock is observed
experimentally. This is likely to be due to either an effect of the granular rheology,
or to the three-dimensional breaking wave observed at the shock in experiments. A
related feature in experimental flows, not present in numerical solutions, is the thin
trench in the flow which persists downstream. We attribute the formation of the trench
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Figure 11. Numerical phase diagram, showing the dependence of flow regime on ujet and ζ ,
for D = 15 mm. As before, teardrop-shaped shocks are indicated by crosses (×), blunted shocks
by circles (�) and steady flows showing no shock by plus signs (+). Time-dependent flows are
represented by squares (�). All flows for ζ � 21◦ are steady.

in experiments to the complex three-dimensional flow in the shock region, which is
not present in the depth-integrated model. However, even if a perturbation in height is
introduced artificially into a time-dependent numerical solution, the perturbation will
dissipate in a wave-like manner; by contrast, in experimental flows, the perturbation
persists and is advected downstream. This suggests that the persistence of the trench is
due to the actual rheology differing from the modelled lithostatic pressure distribution.
The lack of disturbance of the trench, and of grains on the surface of thicker
experimental flows such as that in figure 4, suggests that very little shear occurs near
the surface, the shear being concentrated instead in a thin region at the base.

5.3. Dependence on ζ and ujet

A phase diagram of flow regimes observed in the numerical solutions for D = 15 mm
is shown in figure 11, which is comparable to the experimental phase diagram
in figure 5. The four regimes of flow (unsteady flows, steady flows without a shock,
steady teardrop-shaped shocks and steady blunted shocks) and their relative locations
on the phase diagram are all reproduced by the shallow-flow model.

The numerical results are parameterised by ujet , the speed of flow exiting the
impingement region in (4.16). In the experiments, this velocity is unknown, but is
dependent on the funnel height Hf . To aid comparison between figures 5 and 11, we
plot figure 11 with the effective funnel height Hi required to generate flow exiting
the impingement region at ujet . Assuming a freely falling jet (in which the grain
acceleration is g) and no loss of energy in the impingement region, this effective
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height is

Hi =
u2

jet

2g
. (5.3)

The energy loss in the impingement region causes Hi to be significantly smaller
than the corresponding experimental Hf : for a flow speed exiting the impingement
region of 0.99 ms−1 as measured for the flow in figure 2, Hi ≈ 5 cm, whereas
Hf =30 cm.

The model solutions reproduce the experimental result of a single inclination angle
dividing steady and unsteady flows, and (for sufficiently large ζ ) a single value of
Hi separating flows with teardrop-shaped shocks and flows with no shocks. The
numerical solutions also correctly predict that as Hi increases, blunted shocks are
observed over a shallower range of slope angles, though this effect is more pronounced
in numerical simulations than in experiments. The overestimate could be attributed
to an increasing proportion of the energy of the granular jet being dissipated in the
impingement region with increasing Hi . In general, the numerical solutions predict the
occurrence of flow regimes at lower slope angles than those measured experimentally.
Such a difference is to be expected, since our grains and the inclined plane surface
roughness are not identical to those used by Pouliquen & Forterre (2002) in the
measurements of the friction law.

While the regimes of teardrop-shaped and blunted shocks are closely reproduced
by numerical solutions, the regimes of unsteady flow and of steady flow without a
shock are modelled less well. Experimentally, when Hi is sufficiently low, the flow
velocity is too small to create a clear shock and a diffuse transition to downslope flow
is observed. In the numerical solutions, rheological effects that would cause the shocks
to become diffuse are not modelled, and we do not observe these smooth solutions.
Instead, the size of the predicted shock continues to decrease with Hi , to the point
where the shock reaches the diameter of the impinging jet. In figure 11, we mark
solutions as having no shock if either the shock width or length is smaller than the
diameter of the impinging jet. Flows with no shock also occur experimentally when ζ

is sufficiently small, in which case the flow is subcritical everywhere, including at the
point of impingement. In numerical solutions of these flows, a subcritical flow with
no shocks is observed everywhere in the domain, apart from that in the impingement
region, where the model of § 4.2 is applied. While this model of the impinging jet is not
appropriate for flows which are subcritical at the impingement point, it nonetheless
provides us the correct mass flux to a subcritical flow.

The regimes in the numerical phase diagram are robust to changes in the parameters
of the friction law. While the values of ζ and Hi for which different regimes occur
vary with the details of the friction law, as does the size of the shock, the occurrence
and relative position in the phase diagram of the four flow regimes are insensitive
to the precise formulation. This is consistent with the experimental observation of
blunted and tear-drop-shaped shocks in a range of granular materials, particle sizes
and rough surfaces.

Figure 12 shows numerical predictions and experimental measurements of the
shock length (the distance from the impingement point to the lowest point of the
shock). The experimental results are for Hf = 30 cm, and the numerical solutions at
the corresponding ujet = 0.99 m s−1.

An approximately linear relationship between shock length and slope angle is
observed experimentally. The numerical predictions are in quantitative agreement
with experimental measurements at steeper slope angles, where the flow is well into
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Figure 12. Experimental measurements and numerical predictions of the shock length, against
slope angle, for D = 15 mm, Hf =30 cm (experimental) and ujet = 0.99 m s−1 (numerical).
Experimental measurements are indicated by symbols with error bars, and numerical results
are joined by a grey line. A cross (×) indicates a teardrop-shaped shock, and a circle (�) a
blunted shock.

the teardrop-shaped shock regime. At lower slope angles, the discrepancy between
numerical and experimental results at lower slope angles is due, as before, to the
difference between particle and surface properties in our experimental setup, and in
that used to determine the friction law.

A notable feature of the model results is the discontinuous change in shock
lengths that occurs at the transition between teardrop-shaped and blunted shocks
(ζ =24.6◦). No such discontinuity is evident in the experimental results. This reinforces
the conclusion that, although the primary mechanism for the formation of blunted
granular jumps is the presence of a Mach reflection, three-dimensional or rheological
effects also play an important role.

6. Unsteady flows
The flows considered thus far have all tended quickly to a steady state after an

initial transient flow. A range of flows are observed experimentally, below a critical
slope angle ζ0, which do not tend to steady flow or which do so in a complex
manner. This angle is insensitive to Hf (figure 5), but decreases with increasing D. At
sufficiently low ζ , no steady flows are observed, for all Hf and D.

These observations are consistent with the hypothesis that unsteady flow behaviour
is related to stationary material on the plane and the stick–slip behaviour encapsulated
by the heights hstart and hstop . Static uniform layers of material can exist on the plane
at heights up to hstart . If the depth of flowing material is similar to or smaller than this,
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Figure 13. Unsteady flow, ζ = 26.5◦, Hf = 25 cm, D = 10 mm. Material striking the plane in
(a) spreads into a thin layer, as in figure 3(a). This layer slows downstream and becomes
stationary (b), and the shock connecting the stationary to the flowing material propagates
back towards the point of impingement (b–c). When the shock reaches the impingement point,
the flow regime changes to the formation of a conical pile (d ), which grows through avalanches
down its flanks. A number of such avalanches occur (e), before a collapse of the pile occurs (f ).
This reforms the region of thin, radial flow around the impingement point and surrounding
shock (g). The material downstream is arrested by friction, and the shock again propagates
inwards and towards the point of impingement (h). A movie showing the evolution of this
unsteady flow is available with the online version of this paper.

the effect of the static layer on the location and form of the flow becomes significant.
From a steady-state flow, this situation can occur either through a decrease in mass
flux (and correspondingly in h), or through a decrease in ζ , with a corresponding
increase in hstart and hstop .

For a given mass flux, a steady uniform flow has its thickness and velocity
determined by mass conservation, and by the balance of forces

µ (h, u) = tan ζ, (6.1)

corresponding to sx =0 in (2.3). If the mass flux is sufficiently small, or the cross-slope
width sufficiently large, the flow height h becomes less than hstop and no steady
solution exists. The flow regime entered in this case is one of unsteady avalanching.

A typical unsteady flow is shown in figure 13. Material downstream of the
impingement region is arrested by friction to form a layer of stationary material
on the plane, and two shocks propagate up towards the point of impingement
(figure 13b). The two shocks connect, and a closed shock resembling that of the
steady teardrop-shaped shock is formed, although in this case the shock continually
propagates inwards towards the impingement point. The flowing region consists of
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the thin radial flow surrounding the shock, and two supercritical streams of flow
immediately outside the shock that were identified in the steady-state flows. Outside
this, the flow is stationary. This flowing region contrasts with that seen in a one-
dimensional propagating granular bore, in which the grains are brought to rest
rapidly by the shock (Gray et al. 2003). In the oblique shocks of 13(b), only the flow
velocity normal to the shock is brought to zero, leaving tangentially flowing streams
of material in the thicker flow outside the closed jump. The collision of these streams
at the vertex of the shock creates a stream of moving grains downstream of the vertex
(shown in figure 13b), which deposits a ridge of stationary material (figure 13b–e).
Up to this point, the impingement region and shallow-layer flow models presented
are appropriate, and can reproduce the main features of the flow.

When the shock reaches the impingement point (figure 13c), the flow switches to
a new regime of conical pile formation (figure 13d ), in which the flow is no longer
shallow. Material in the falling jet is slowed rapidly by impact with other material on
the plane, and acts simply as a mass source at the top of the conical pile. The flow
is thus very insensitive to Hf once in this regime. The pile grows through unsteady
avalanching down its flanks. Avalanches are concentrated on the downslope flank of
the pile, and are approximately periodic, with a period of the order a few seconds,
though the position on the flank and temporal length of each avalanche vary.

Unlike pile formation on a horizontal plane, where the size of the pile grows
indefinitely, a spontaneous collapse of the pile occurs on an inclined plane. Figure 13(e)
shows the pile just before this occurs. The collapse causes a large mass of material
to flow down the plane (figure 13f ), re-mobilising the existing static layer. As a
consequence of this collapse, a new region of fast radial flow surrounded by a
closed shock forms around the impingement point. Uphill and to the sides of the
impingement point, there remains a deep pile of stationary material, the remnants
of the conical pile. The flow from the collapsed part of the conical pile thins as it
spreads, and becomes static as h drops below hstop . As before, this causes the shock to
propagate inwards towards the impingement point, and a new conical pile is formed.
The sequence of conical pile formation, collapse, flow stagnation and inward shock
propagation may repeat for several tens of cycles.

The initiation of collapse of the growing conical pile is nearly simultaneous
across the whole pile, occurring within one frame of video (1/25th second), which
corresponds to a rate of information propagation of �5 m s−1. This is much faster than
the gravity wave speed of 0.7 m s−1 predicted by the hyperbolic equations (2.2)–(2.4),
indicating that the mechanism of collapse is not captured by the depth-averaged
model. The collapse does not occur at a well-defined pile size; the onset appears to
be very sensitive to the properties of the pile, possibly to the internal micro-structure
of the grains.

Small asymmetries can be seen in figures 13(d ) and 13(e), which can be attributed
to variations in the height of the static material. A much greater asymmetry occurs
occasionally in the collapse of the conical pile. This asymmetric collapse is due to the
ridge of material seen in figure 13(b–e), which has the effect of supporting the central
part of the conical pile against collapse. As a result, the collapse can occur on only
one side of the pile. The resulting flow, shown in figure 14, consists of an asymmetric
flowing region with several shocks. The flowing region is bounded by thick stationary
material from the conical pile, which diverts the flow near the impingement region to
one side, and by a thinner layer of static material on the inclined plane, which restricts
the downslope flow to a narrow channel. The flow is nearly steady: the restriction of
the width of flowing material allows the flowing layer downstream to have a depth
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Figure 14. Asymmetric flow, ζ = 26.4◦, Hf = 9 cm, D = 8 mm. Dashed lines indicated the
boundary of the flowing region; thin dot-dash lines indicate the location of shocks. The flow
is quasi-steady, in the sense the time-dependence is through slow evolution of the boundary
between static and flowing grains.

greater than hstop , and thus be in steady uniform flow. A very slow evolution of the
flow is observed, caused by erosion of the static grains, and deposition of the flowing
ones, at the boundary between flowing and static material.

The shock structure in figure 14 differs from that seen in the teardrop and blunted
cases. The shock surrounding region A is asymmetric, with a greater mass flux from
regions A to B across shock α than that from regions A to C across shock β .
Beyond the point P , the flow in region C converges with the thicker flow of region
B, forming the shock γ between the two regions. Shock δ, separating regions C and
D, originates at the point R, where the boundary between flowing and static grains
is sharply curved. This is an oblique shock, analogous to that found in the case of a
compression ramp in supersonic gas dynamics (Courant & Friedrichs 1977) and in
converging channels of flowing granular material (Gray & Cui 2007). A second shock
interaction point is formed at Q.

7. Conclusion
The flow generated by impingement of a granular jet on an inclined plane, while

having similarities with its fluid counterpart, exhibits a range of behaviour specific to
granular materials. Two distinct steady-state flow regimes displaying closed granular
jumps have been found, one with a teardrop-shaped shock and one with a smooth,
‘blunted’ shock. In these two regimes, the principal features of the flow, listed from
the point of impingement outwards, are a fast-moving region of thin radial flow, a
closed granular jump, rapid streams of material flowing nearly tangentially to the
shock, a region of slower downslope flow and static material outside the flowing
region. The two regimes differ in the supercritical or subcritical nature of the thicker
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flow surrounding the shock; fully supercritical flow leads to a teardrop-shaped shock,
whereas subcritical flow surrounding the downstream part of the shock leads to a
blunted shock.

These flows have been modelled through a shallow-layer approximation, leading to
a system of hyperbolic equations. The concepts of sub- or supercritical flow and shock
waves which result from these equations are fundamental to an understanding of the
flow. Numerical solutions of the model equations reproduce the phase diagram of
the solution regimes, and quantitatively predict features such as flow velocity and the
shock length in the regime of steady teardrop-shaped shocks. The three-dimensional
breaking wave observed in blunted shocks is outside the scope of the depth-averaged
model, but the overall form of flow is nonetheless correctly reproduced, displaying
quantitative agreement with the measured flow velocity.

The steady granular jumps, and the radial flow within them, are governed primarily
by conservation of mass and momentum. Outside the shock, in the slower downslope
flow, the basal friction and gravity source terms play an important role. The balance
of these forces governs the flow far downstream, and influences the form of the
granular jump through control of the flow on the downstream side of the shock.

At sufficiently low slope angles, there is no steady balance between gravity and
friction in the downslope flow. Instead, the hysteretic nature of the transition between
flowing and stationary material, encapsulated in the functions hstart and hstop leads
to oscillatory behaviour and periodic avalanching. The exact mechanism is unclear,
however, for transition between stationary and moving flow (involved in the erosion
and deposition of static material), and for the sudden collapse of the conical pile.
Such regimes are known to exhibit complex dynamics (Pouliquen & Forterre 2002),
and are likely dependent on details of the grain micro-structure.

C.J. acknowledges support from an NERC DTG NE/G523747/1 and an EPSRC
DTA. J.M.N.T.G. was supported by an NERC grant NE/E003206/1 and an EPSRC
Advanced Research Fellowship GR/S50052/01 & GR/S50069/01.

Supplementary movies are available at journals.cambridge.org/flm.
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